Algebra Preliminaries for Calculus - Part One

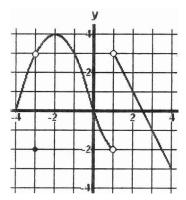
- 1. Solve the equation: $x^3 x^2 6x = 0$
- 2. Solve the equation: $2x^2 6x + 3 = 0$
- 3. Find the domain of the function $f(x) = \sqrt{3x 4}$. Write your answer in interval notation.

In Items 4 and 5, solve the inequality and write the solution in interval notation.

4.
$$x^3 - 9x < 0$$

5. $\frac{x^2-6x+5}{(x-3)^2} \leq 0$

In Items 6 through 9, simplify the given expression.


6.
$$\frac{x^2 + 3x - 4}{x - 1}$$

7. $\frac{\frac{1}{x + h} - \frac{1}{x}}{h}$

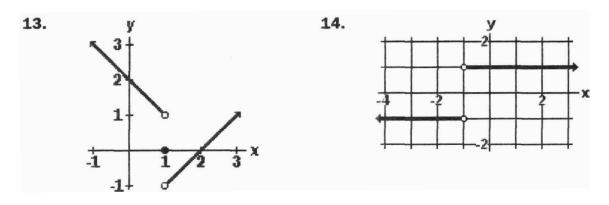
8.
$$\frac{f(x+h) - f(x)}{h}$$
, given that $f(x) = x^2 - x$

- 9. $\frac{3}{\sqrt{x+2} \sqrt{x}}$ (Rationalize the denominator.)
- 10. Find the slope of the line through the points with x-coordinates of 1 and 4, and y-coordinates given by $y = f(x) = 4x^{-1/2}$.
- 11. Find the equation of the line through point (3,1) with slope m = 2. Write your answer in slope-intercept form (y = mx + b).
- 12. Use the graph of function f to complete the following:
 - f(-3) = _____ f(-1) = _____
 - f(1) = _____ f(3) = _____

f is increasing in the intervals: _____

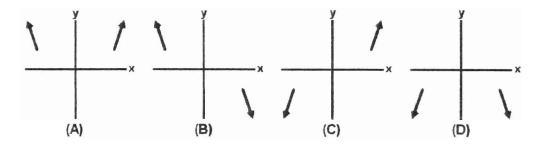
f is decreasing in the intervals: _____

13. Graph the function:
$$f(x) = \begin{cases} 2-x & \text{if } x < 1 \\ 0 & \text{if } x = 1 \\ x-2 & \text{if } x > 1 \end{cases}$$


14. Graph the function:
$$f(x) = \frac{|x+1|}{x+1}$$

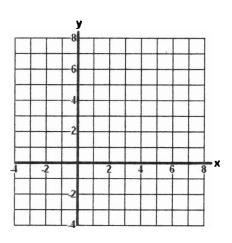
Answers

1. x = 0, -2,	3 2		$x = (3 \pm \sqrt{3})/2$
3. [4/3,∞) 4		($-\infty$, -3) \cup (0, 3)
5. [1,3)∪	(3,5] 6		x + 4
7. $-\frac{1}{x(x+h)}$		-	2x + h - 1
9. $\frac{3(\sqrt{x+2}+2)}{2}$	· √x) 10).	-2/3


11.
$$y = 2x - 5$$

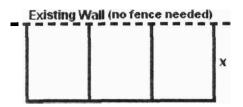
12. f(-3) = -2; f(-1) = 3; f(1) is not defined; f(3) = -1; increasing in [-4,-3) and (-3,-2]; decreasing in [-2,1) and (1,4]

<u>Algebra Preliminaries for Calculus – Part Two</u>


- 1. Complete the factoring of these expressions. Find and simplify the missing factor.
 - a) $(2)(x^{2}+2)(2x)(1-2x^{2})^{2}+(x^{2}+2)^{2}(2)(1-2x^{2})(-4x) = 4x(x^{2}+2)(1-2x^{2})(-$
 - b) $2x (x^2 1)^{1/2} + x^2(1/2)(x^2 1)^{-1/2}(2x) = x (x^2 1)^{-1/2}(2x)$
- 2. Solve the equation: $(4/3)x^{-2/3} (2/3)x^{-1/3} = 0$
- 3. Solve the equation: $(x/6)(16 + x^2)^{-1/2} 1/10 = 0$
- 4. Which of these graphs shows the end behavior of the function $f(x) = x^2 + x^3 x$?

5. Give functions f and g so that composite function $f[g(x)] = \sqrt{x^2 + 3}$

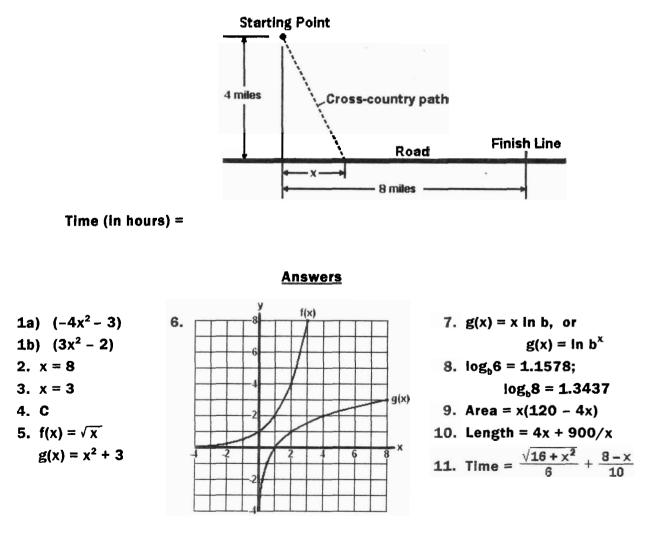
f(x) = ____; g(x) = ____


6. Graph both $f(x) = 2^x$ and $g(x) = \log_2 x$ on this coordinate system.

- 7. Given function $f(x) = e^x$, find function g so that $f[g(x)] = b^x$ for b > 0.
 - g(x) = _____
- 8. Given that $\log_b 2 = 0.4479$ and $\log_b 3 = 0.7099$, find $\log_b 6$ and $\log_b 8$. Give your answers correct to four decimal places.

log_b6 = ____; log_b8 = ____

Items 9 and 10 refer to this figure, which shows new fence (the solid lines) used to enclose a rectangular area and divide it into three smaller areas.


9. Given that the total length of new fence is 120 feet, express the total enclosed area as a function of the dimension "x" shown in the figure.

Area (in square feet) =

10. Given that the total enclosed area is 900 square feet, express the total length of new fence as a function of the dimension "x" shown in the figure.

Length (in feet) =

11. A runner averages six miles per hour on the cross-country path shown in the figure, then finishes the run on a road where he averages ten miles per hour. Express the total time of the run as a function of the dimension "x" shown in the figure.

